Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%
نویسندگان
چکیده
Hydrogen production via electrochemical water splitting is a promising approach for storing solar energy. For this technology to be economically competitive, it is critical to develop water splitting systems with high solar-to-hydrogen (STH) efficiencies. Here we report a photovoltaic-electrolysis system with the highest STH efficiency for any water splitting technology to date, to the best of our knowledge. Our system consists of two polymer electrolyte membrane electrolysers in series with one InGaP/GaAs/GaInNAsSb triple-junction solar cell, which produces a large-enough voltage to drive both electrolysers with no additional energy input. The solar concentration is adjusted such that the maximum power point of the photovoltaic is well matched to the operating capacity of the electrolysers to optimize the system efficiency. The system achieves a 48-h average STH efficiency of 30%. These results demonstrate the potential of photovoltaic-electrolysis systems for cost-effective solar energy storage.
منابع مشابه
Using Floating Photovoltaics, Electrolyser and Fuel Cell to Decrease the Peak Load and Reduce Water Surface Evaporation
Fossil fuel consumption problems and water crisis are serious dangers. Using renewable energy is a solution to reduce fossil fuel consumption. Photovoltaic is a renewable energy generation method which is abundantly used all over the world. By installation of solar panels on the surface of water, the efficiency of panels increases and in addition, the surface evaporation of water will be reduce...
متن کاملRecent Progress in Energy‐Driven Water Splitting
Hydrogen is readily obtained from renewable and non-renewable resources via water splitting by using thermal, electrical, photonic and biochemical energy. The major hydrogen production is generated from thermal energy through steam reforming/gasification of fossil fuel. As the commonly used non-renewable resources will be depleted in the long run, there is great demand to utilize renewable ener...
متن کاملRoles of cocatalysts in photocatalysis and photoelectrocatalysis.
Since the 1970s, splitting water using solar energy has been a focus of great attention as a possible means for converting solar energy to chemical energy in the form of clean and renewable hydrogen fuel. Approaches to solar water splitting include photocatalytic water splitting with homogeneous or heterogeneous photocatalysts, photoelectrochemical or photoelectrocatalytic (PEC) water splitting...
متن کاملDiscovery of Novel Materials for Solar Thermochemical Fuels
Introduction The use of hydrogen as a clean and sustainable fuel depends on an efficient and inexpensive method of producing the gas. Currently, most hydrogen is produced from steam reformation with hydrocarbons, where water splitting (hydrolysis) is performed by reacting steam to carbon-based fuels. To avoid the use of hydrocarbons and greenhouse gas emissions, hydrolysis is also possible thro...
متن کاملSub-Pilot-Scale Hybrid Electrochemical System for Water Treatment and Hydrogen Production using a solar PV panel
There is a clear need for environmentally-friendly alternative energy sources (without carbon emissions) and photovoltaic/electrolysis for hydrogen production via water splitting using organic contaminants as sacrificial electron donors can be a potential solution. This chapter demonstrates the feasibility of a sub-pilot scaled rooftop hybrid photovoltaic-electrolysis system for wastewater trea...
متن کامل